dace
package
Subpackages
- dace.codegen package
- Subpackages
- dace.codegen.instrumentation package
- Submodules
- dace.codegen.instrumentation.fpga module
- dace.codegen.instrumentation.gpu_events module
- dace.codegen.instrumentation.papi module
PAPIInstrumentation
PAPIInstrumentation.configure_papi()
PAPIInstrumentation.get_unique_number()
PAPIInstrumentation.has_surrounding_perfcounters()
PAPIInstrumentation.on_consume_entry()
PAPIInstrumentation.on_copy_begin()
PAPIInstrumentation.on_copy_end()
PAPIInstrumentation.on_map_entry()
PAPIInstrumentation.on_node_begin()
PAPIInstrumentation.on_node_end()
PAPIInstrumentation.on_scope_entry()
PAPIInstrumentation.on_scope_exit()
PAPIInstrumentation.on_sdfg_begin()
PAPIInstrumentation.on_sdfg_end()
PAPIInstrumentation.on_state_begin()
PAPIInstrumentation.perf_counter_end_measurement_string()
PAPIInstrumentation.perf_counter_start_measurement_string()
PAPIInstrumentation.perf_counter_string()
PAPIInstrumentation.perf_counter_string_from_string_list()
PAPIInstrumentation.perf_get_supersection_start_string()
PAPIInstrumentation.perf_section_start_string()
PAPIInstrumentation.perf_supersection_start_string()
PAPIInstrumentation.perf_whitelist_schedules
PAPIInstrumentation.should_instrument_entry()
PAPIUtils
PAPIUtils.accumulate_byte_movement()
PAPIUtils.all_maps()
PAPIUtils.available_counters()
PAPIUtils.get_iteration_count()
PAPIUtils.get_memlet_byte_size()
PAPIUtils.get_memory_input_size()
PAPIUtils.get_out_memlet_costs()
PAPIUtils.get_parents()
PAPIUtils.get_tasklet_byte_accesses()
PAPIUtils.is_papi_used()
PAPIUtils.reduce_iteration_count()
- dace.codegen.instrumentation.provider module
InstrumentationProvider
InstrumentationProvider.extensions()
InstrumentationProvider.get_provider_mapping()
InstrumentationProvider.on_copy_begin()
InstrumentationProvider.on_copy_end()
InstrumentationProvider.on_node_begin()
InstrumentationProvider.on_node_end()
InstrumentationProvider.on_scope_entry()
InstrumentationProvider.on_scope_exit()
InstrumentationProvider.on_sdfg_begin()
InstrumentationProvider.on_sdfg_end()
InstrumentationProvider.on_state_begin()
InstrumentationProvider.on_state_end()
InstrumentationProvider.register()
InstrumentationProvider.unregister()
- dace.codegen.instrumentation.report module
- dace.codegen.instrumentation.timer module
- dace.codegen.instrumentation.data module
- Module contents
- dace.codegen.targets package
- Submodules
- dace.codegen.targets.cpu module
CPUCodeGen
CPUCodeGen.allocate_array()
CPUCodeGen.allocate_reference()
CPUCodeGen.allocate_view()
CPUCodeGen.cmake_options()
CPUCodeGen.copy_memory()
CPUCodeGen.deallocate_array()
CPUCodeGen.declare_array()
CPUCodeGen.define_out_memlet()
CPUCodeGen.generate_node()
CPUCodeGen.generate_nsdfg_arguments()
CPUCodeGen.generate_nsdfg_call()
CPUCodeGen.generate_nsdfg_header()
CPUCodeGen.generate_scope()
CPUCodeGen.generate_scope_postamble()
CPUCodeGen.generate_scope_preamble()
CPUCodeGen.generate_tasklet_postamble()
CPUCodeGen.generate_tasklet_preamble()
CPUCodeGen.get_generated_codeobjects()
CPUCodeGen.has_finalizer
CPUCodeGen.has_initializer
CPUCodeGen.language
CPUCodeGen.make_ptr_assignment()
CPUCodeGen.make_ptr_vector_cast()
CPUCodeGen.memlet_ctor()
CPUCodeGen.memlet_definition()
CPUCodeGen.memlet_stream_ctor()
CPUCodeGen.memlet_view_ctor()
CPUCodeGen.process_out_memlets()
CPUCodeGen.target_name
CPUCodeGen.title
CPUCodeGen.unparse_tasklet()
CPUCodeGen.write_and_resolve_expr()
- dace.codegen.targets.cuda module
CUDACodeGen
CUDACodeGen.allocate_array()
CUDACodeGen.allocate_stream()
CUDACodeGen.cmake_options()
CUDACodeGen.copy_memory()
CUDACodeGen.deallocate_array()
CUDACodeGen.deallocate_stream()
CUDACodeGen.declare_array()
CUDACodeGen.define_out_memlet()
CUDACodeGen.generate_devicelevel_scope()
CUDACodeGen.generate_devicelevel_state()
CUDACodeGen.generate_kernel_scope()
CUDACodeGen.generate_node()
CUDACodeGen.generate_nsdfg_arguments()
CUDACodeGen.generate_nsdfg_call()
CUDACodeGen.generate_nsdfg_header()
CUDACodeGen.generate_scope()
CUDACodeGen.generate_state()
CUDACodeGen.get_generated_codeobjects()
CUDACodeGen.get_kernel_dimensions()
CUDACodeGen.get_next_scope_entries()
CUDACodeGen.get_tb_maps_recursive()
CUDACodeGen.has_finalizer
CUDACodeGen.has_initializer
CUDACodeGen.make_ptr_vector_cast()
CUDACodeGen.node_dispatch_predicate()
CUDACodeGen.preprocess()
CUDACodeGen.process_out_memlets()
CUDACodeGen.state_dispatch_predicate()
CUDACodeGen.target_name
CUDACodeGen.title
cpu_to_gpu_cpred()
prod()
- dace.codegen.targets.framecode module
- dace.codegen.targets.mpi module
- dace.codegen.targets.target module
IllegalCopy
TargetCodeGenerator
TargetCodeGenerator.allocate_array()
TargetCodeGenerator.cmake_options()
TargetCodeGenerator.copy_memory()
TargetCodeGenerator.deallocate_array()
TargetCodeGenerator.declare_array()
TargetCodeGenerator.extensions()
TargetCodeGenerator.generate_node()
TargetCodeGenerator.generate_scope()
TargetCodeGenerator.generate_state()
TargetCodeGenerator.get_generated_codeobjects()
TargetCodeGenerator.has_finalizer
TargetCodeGenerator.has_initializer
TargetCodeGenerator.preprocess()
TargetCodeGenerator.register()
TargetCodeGenerator.unregister()
make_absolute()
- dace.codegen.targets.fpga module
FPGACodeGen
FPGACodeGen.allocate_array()
FPGACodeGen.copy_memory()
FPGACodeGen.deallocate_array()
FPGACodeGen.declare_array()
FPGACodeGen.define_out_memlet()
FPGACodeGen.find_rtl_tasklet()
FPGACodeGen.generate_host_function_boilerplate()
FPGACodeGen.generate_kernel()
FPGACodeGen.generate_modules()
FPGACodeGen.generate_nested_state()
FPGACodeGen.generate_node()
FPGACodeGen.generate_nsdfg_arguments()
FPGACodeGen.generate_nsdfg_call()
FPGACodeGen.generate_nsdfg_header()
FPGACodeGen.generate_scope()
FPGACodeGen.generate_state()
FPGACodeGen.generate_tasklet_postamble()
FPGACodeGen.generate_tasklet_preamble()
FPGACodeGen.get_next_scope_entries()
FPGACodeGen.has_finalizer
FPGACodeGen.has_initializer
FPGACodeGen.instrument_opencl_kernel()
FPGACodeGen.is_multi_pumped_subgraph()
FPGACodeGen.language
FPGACodeGen.make_opencl_parameter()
FPGACodeGen.make_parameters()
FPGACodeGen.make_ptr_assignment()
FPGACodeGen.make_ptr_vector_cast()
FPGACodeGen.partition_kernels()
FPGACodeGen.preprocess()
FPGACodeGen.process_out_memlets()
FPGACodeGen.shared_data()
FPGACodeGen.target_name
FPGACodeGen.title
fpga_ptr()
get_multibank_ranges_from_subset()
is_external_stream()
is_fpga_array()
is_multibank_array()
is_multibank_array_with_distributed_index()
is_vendor_supported()
iterate_distributed_subset()
iterate_multibank_interface_ids()
modify_distributed_subset()
parse_location_bank()
unqualify_fpga_array_name()
vector_element_type_of()
- dace.codegen.targets.xilinx module
- dace.codegen.targets.intel_fpga module
IntelFPGACodeGen
IntelFPGACodeGen.allocate_view()
IntelFPGACodeGen.cmake_options()
IntelFPGACodeGen.create_mangled_channel_name()
IntelFPGACodeGen.create_mangled_module_name()
IntelFPGACodeGen.define_local_array()
IntelFPGACodeGen.define_shift_register()
IntelFPGACodeGen.define_stream()
IntelFPGACodeGen.generate_channel_writes()
IntelFPGACodeGen.generate_constants()
IntelFPGACodeGen.generate_converters()
IntelFPGACodeGen.generate_flatten_loop_post()
IntelFPGACodeGen.generate_flatten_loop_pre()
IntelFPGACodeGen.generate_host_function_body()
IntelFPGACodeGen.generate_host_function_prologue()
IntelFPGACodeGen.generate_kernel_internal()
IntelFPGACodeGen.generate_memlet_definition()
IntelFPGACodeGen.generate_module()
IntelFPGACodeGen.generate_no_dependence_post()
IntelFPGACodeGen.generate_no_dependence_pre()
IntelFPGACodeGen.generate_nsdfg_arguments()
IntelFPGACodeGen.generate_nsdfg_header()
IntelFPGACodeGen.generate_pipeline_loop_post()
IntelFPGACodeGen.generate_pipeline_loop_pre()
IntelFPGACodeGen.generate_tasklet_postamble()
IntelFPGACodeGen.generate_undefines()
IntelFPGACodeGen.generate_unroll_loop_post()
IntelFPGACodeGen.generate_unroll_loop_pre()
IntelFPGACodeGen.get_generated_codeobjects()
IntelFPGACodeGen.get_mangled_channel_name()
IntelFPGACodeGen.language
IntelFPGACodeGen.make_kernel_argument()
IntelFPGACodeGen.make_ptr_vector_cast()
IntelFPGACodeGen.make_read()
IntelFPGACodeGen.make_shift_register_write()
IntelFPGACodeGen.make_vector_type()
IntelFPGACodeGen.make_write()
IntelFPGACodeGen.process_out_memlets()
IntelFPGACodeGen.target_name
IntelFPGACodeGen.title
IntelFPGACodeGen.unparse_tasklet()
IntelFPGACodeGen.write_and_resolve_expr()
OpenCLDaceKeywordRemover
OpenCLDaceKeywordRemover.ctypes
OpenCLDaceKeywordRemover.nptypes
OpenCLDaceKeywordRemover.nptypes_to_ctypes
OpenCLDaceKeywordRemover.visit_Assign()
OpenCLDaceKeywordRemover.visit_Attribute()
OpenCLDaceKeywordRemover.visit_BinOp()
OpenCLDaceKeywordRemover.visit_Call()
OpenCLDaceKeywordRemover.visit_Name()
- Module contents
- dace.codegen.instrumentation package
- Submodules
- dace.codegen.codegen module
- dace.codegen.codeobject module
- dace.codegen.compiled_sdfg module
- dace.codegen.compiler module
- dace.codegen.control_flow module
- dace.codegen.cppunparse module
CPPLocals
CPPUnparser
CPPUnparser.binop
CPPUnparser.boolops
CPPUnparser.callbools
CPPUnparser.callcmps
CPPUnparser.cmpops
CPPUnparser.dispatch()
CPPUnparser.dispatch_lhs_tuple()
CPPUnparser.enter()
CPPUnparser.fill()
CPPUnparser.format_conversions
CPPUnparser.funcops
CPPUnparser.leave()
CPPUnparser.unop
CPPUnparser.write()
LocalScheme
cppunparse()
interleave()
py2cpp()
pyexpr2cpp()
- dace.codegen.dispatcher module
DefinedMemlets
DefinedType
TargetDispatcher
TargetDispatcher.declared_arrays
TargetDispatcher.defined_vars
TargetDispatcher.dispatch_allocate()
TargetDispatcher.dispatch_copy()
TargetDispatcher.dispatch_deallocate()
TargetDispatcher.dispatch_node()
TargetDispatcher.dispatch_output_definition()
TargetDispatcher.dispatch_scope()
TargetDispatcher.dispatch_state()
TargetDispatcher.dispatch_subgraph()
TargetDispatcher.get_array_dispatcher()
TargetDispatcher.get_copy_dispatcher()
TargetDispatcher.get_generic_node_dispatcher()
TargetDispatcher.get_generic_state_dispatcher()
TargetDispatcher.get_node_dispatcher()
TargetDispatcher.get_predicated_node_dispatchers()
TargetDispatcher.get_predicated_state_dispatchers()
TargetDispatcher.get_scope_dispatcher()
TargetDispatcher.get_state_dispatcher()
TargetDispatcher.register_array_dispatcher()
TargetDispatcher.register_copy_dispatcher()
TargetDispatcher.register_map_dispatcher()
TargetDispatcher.register_node_dispatcher()
TargetDispatcher.register_state_dispatcher()
TargetDispatcher.used_environments
TargetDispatcher.used_targets
- dace.codegen.exceptions module
- dace.codegen.prettycode module
- Module contents
- Subpackages
- dace.cli package
- dace.frontend package
- Subpackages
- dace.frontend.common package
- dace.frontend.octave package
- Submodules
- dace.frontend.octave.ast_arrayaccess module
- dace.frontend.octave.ast_assign module
- dace.frontend.octave.ast_expression module
AST_BinExpression
AST_BinExpression.generate_code()
AST_BinExpression.get_basetype()
AST_BinExpression.get_children()
AST_BinExpression.get_dims()
AST_BinExpression.matrix2d_matrix2d_mult()
AST_BinExpression.matrix2d_matrix2d_plus_or_minus()
AST_BinExpression.matrix2d_scalar()
AST_BinExpression.provide_parents()
AST_BinExpression.replace_child()
AST_BinExpression.scalar_scalar()
AST_BinExpression.vec_mult_vect()
AST_UnaryExpression
- dace.frontend.octave.ast_function module
- dace.frontend.octave.ast_loop module
- dace.frontend.octave.ast_matrix module
- dace.frontend.octave.ast_node module
AST_Node
AST_Node.defined_variables()
AST_Node.find_data_node_in_sdfg_state()
AST_Node.generate_code()
AST_Node.get_children()
AST_Node.get_datanode()
AST_Node.get_initializers()
AST_Node.get_name_in_sdfg()
AST_Node.get_new_tmpvar()
AST_Node.get_parent()
AST_Node.print_as_tree()
AST_Node.provide_parents()
AST_Node.replace_child()
AST_Node.replace_parent()
AST_Node.search_vardef_in_scope()
AST_Node.shortdesc()
AST_Node.specialize()
AST_Statements
- dace.frontend.octave.ast_nullstmt module
- dace.frontend.octave.ast_range module
- dace.frontend.octave.ast_values module
- dace.frontend.octave.lexer module
- dace.frontend.octave.parse module
p_arg1()
p_arg2()
p_arg_list()
p_args()
p_break_stmt()
p_case_list()
p_cellarray()
p_cellarray_2()
p_cellarrayref()
p_command()
p_comment_stmt()
p_concat_list1()
p_concat_list2()
p_continue_stmt()
p_elseif_stmt()
p_end()
p_end_function()
p_error()
p_error_stmt()
p_expr()
p_expr1()
p_expr2()
p_expr_2()
p_expr_colon()
p_expr_end()
p_expr_ident()
p_expr_list()
p_expr_number()
p_expr_stmt()
p_expr_string()
p_exprs()
p_field_expr()
p_foo_stmt()
p_for_stmt()
p_func_stmt()
p_funcall_expr()
p_global()
p_global_list()
p_global_stmt()
p_ident_init_opt()
p_if_stmt()
p_lambda_args()
p_lambda_expr()
p_matrix()
p_matrix_2()
p_null_stmt()
p_parens_expr()
p_persistent_stmt()
p_ret()
p_return_stmt()
p_semi_opt()
p_separator()
p_stmt()
p_stmt_list()
p_stmt_list_opt()
p_switch_stmt()
p_top()
p_transpose_expr()
p_try_catch()
p_unwind()
p_while_stmt()
parse()
- dace.frontend.octave.parsetab module
- Module contents
- dace.frontend.python package
- Submodules
- dace.frontend.python.astutils module
ASTFindReplace
ASTHelperMixin
AnnotateTopLevel
ConstantExtractor
ExtNodeTransformer
ExtNodeVisitor
ExtUnparser
NameFound
RemoveSubscripts
TaskletFreeSymbolVisitor
astrange_to_symrange()
copy_tree()
create_constant()
escape_string()
evalnode()
function_to_ast()
is_constant()
negate_expr()
rname()
slice_to_subscript()
subscript_to_ast_slice()
subscript_to_ast_slice_recursive()
subscript_to_slice()
unparse()
- dace.frontend.python.cached_program module
- dace.frontend.python.common module
- dace.frontend.python.interface module
- dace.frontend.python.memlet_parser module
- dace.frontend.python.ndloop module
- dace.frontend.python.newast module
AddTransientMethods
ProgramVisitor
ProgramVisitor.create_callback()
ProgramVisitor.defined
ProgramVisitor.increment_progress()
ProgramVisitor.make_slice()
ProgramVisitor.parse_program()
ProgramVisitor.progress_bar
ProgramVisitor.progress_count()
ProgramVisitor.start_time
ProgramVisitor.visit()
ProgramVisitor.visit_AnnAssign()
ProgramVisitor.visit_Assign()
ProgramVisitor.visit_AsyncWith()
ProgramVisitor.visit_Attribute()
ProgramVisitor.visit_AugAssign()
ProgramVisitor.visit_BinOp()
ProgramVisitor.visit_BoolOp()
ProgramVisitor.visit_Break()
ProgramVisitor.visit_Bytes()
ProgramVisitor.visit_Call()
ProgramVisitor.visit_Compare()
ProgramVisitor.visit_Constant()
ProgramVisitor.visit_Continue()
ProgramVisitor.visit_Dict()
ProgramVisitor.visit_ExtSlice()
ProgramVisitor.visit_For()
ProgramVisitor.visit_FunctionDef()
ProgramVisitor.visit_If()
ProgramVisitor.visit_Index()
ProgramVisitor.visit_Lambda()
ProgramVisitor.visit_List()
ProgramVisitor.visit_Name()
ProgramVisitor.visit_NameConstant()
ProgramVisitor.visit_NamedExpr()
ProgramVisitor.visit_Num()
ProgramVisitor.visit_Return()
ProgramVisitor.visit_Set()
ProgramVisitor.visit_Str()
ProgramVisitor.visit_Subscript()
ProgramVisitor.visit_TopLevelExpr()
ProgramVisitor.visit_Tuple()
ProgramVisitor.visit_UnaryOp()
ProgramVisitor.visit_While()
ProgramVisitor.visit_With()
SkipCall
TaskletTransformer
add_indirection_subgraph()
parse_dace_program()
specifies_datatype()
until()
- dace.frontend.python.parser module
- dace.frontend.python.preprocessing module
ArrayClosureResolver
AugAssignExpander
CallTreeResolver
ConditionalCodeResolver
ContextManagerInliner
DaceRecursionError
DeadCodeEliminator
DisallowedAssignmentChecker
ExpressionInliner
GlobalResolver
GlobalResolver.generic_visit()
GlobalResolver.global_value_to_node()
GlobalResolver.globals
GlobalResolver.visit_Assert()
GlobalResolver.visit_AsyncFunctionDef()
GlobalResolver.visit_Attribute()
GlobalResolver.visit_AugAssign()
GlobalResolver.visit_Call()
GlobalResolver.visit_For()
GlobalResolver.visit_FunctionDef()
GlobalResolver.visit_JoinedStr()
GlobalResolver.visit_Lambda()
GlobalResolver.visit_Name()
GlobalResolver.visit_Raise()
GlobalResolver.visit_Subscript()
GlobalResolver.visit_TopLevelExpr()
GlobalResolver.visit_keyword()
LoopUnroller
ModuleResolver
PreprocessedAST
RewriteSympyEquality
StructTransformer
find_disallowed_statements()
flatten_callback()
has_replacement()
preprocess_dace_program()
- dace.frontend.python.replacements module
- dace.frontend.python.tasklet_runner module
- dace.frontend.python.wrappers module
- Module contents
- Submodules
- dace.frontend.operations module
- Module contents
- Subpackages
- dace.sdfg package
- Submodules
- dace.sdfg.graph module
DiGraph
DiGraph.add_edge()
DiGraph.add_node()
DiGraph.edges()
DiGraph.edges_between()
DiGraph.find_cycles()
DiGraph.has_cycles()
DiGraph.in_degree()
DiGraph.in_edges()
DiGraph.is_directed()
DiGraph.is_multigraph()
DiGraph.nodes()
DiGraph.number_of_edges()
DiGraph.number_of_nodes()
DiGraph.out_degree()
DiGraph.out_edges()
DiGraph.remove_edge()
DiGraph.remove_node()
Edge
EdgeNotFoundError
Graph
Graph.add_edge()
Graph.add_node()
Graph.add_nodes_from()
Graph.all_edges()
Graph.all_nodes_between()
Graph.all_simple_paths()
Graph.bfs_edges()
Graph.degree()
Graph.dfs_edges()
Graph.edge_id()
Graph.edges()
Graph.edges_between()
Graph.in_degree()
Graph.in_edges()
Graph.is_directed()
Graph.is_multigraph()
Graph.neighbors()
Graph.node_id()
Graph.nodes()
Graph.number_of_edges()
Graph.number_of_nodes()
Graph.nx
Graph.out_degree()
Graph.out_edges()
Graph.predecessors()
Graph.remove_edge()
Graph.remove_node()
Graph.remove_nodes_from()
Graph.sink_nodes()
Graph.source_nodes()
Graph.successors()
Graph.to_json()
Graph.topological_sort()
MultiConnectorEdge
MultiDiConnectorGraph
MultiDiGraph
MultiEdge
NodeNotFoundError
OrderedDiGraph
OrderedDiGraph.add_edge()
OrderedDiGraph.add_node()
OrderedDiGraph.edges()
OrderedDiGraph.edges_between()
OrderedDiGraph.find_cycles()
OrderedDiGraph.has_cycles()
OrderedDiGraph.in_degree()
OrderedDiGraph.in_edges()
OrderedDiGraph.is_directed()
OrderedDiGraph.is_multigraph()
OrderedDiGraph.node()
OrderedDiGraph.node_id()
OrderedDiGraph.nodes()
OrderedDiGraph.number_of_edges()
OrderedDiGraph.number_of_nodes()
OrderedDiGraph.nx
OrderedDiGraph.out_degree()
OrderedDiGraph.out_edges()
OrderedDiGraph.remove_edge()
OrderedDiGraph.remove_node()
OrderedDiGraph.reverse()
OrderedMultiDiConnectorGraph
OrderedMultiDiConnectorGraph.add_edge()
OrderedMultiDiConnectorGraph.add_nedge()
OrderedMultiDiConnectorGraph.edges_between()
OrderedMultiDiConnectorGraph.in_edges()
OrderedMultiDiConnectorGraph.is_multigraph()
OrderedMultiDiConnectorGraph.out_edges()
OrderedMultiDiConnectorGraph.remove_edge()
OrderedMultiDiConnectorGraph.reverse()
OrderedMultiDiGraph
SubgraphView
SubgraphView.add_edge()
SubgraphView.add_node()
SubgraphView.add_nodes_from()
SubgraphView.edges()
SubgraphView.edges_between()
SubgraphView.graph
SubgraphView.in_degree()
SubgraphView.in_edges()
SubgraphView.is_directed()
SubgraphView.is_multigraph()
SubgraphView.node_id()
SubgraphView.nodes()
SubgraphView.number_of_edges()
SubgraphView.number_of_nodes()
SubgraphView.out_degree()
SubgraphView.out_edges()
SubgraphView.remove_edge()
SubgraphView.remove_node()
SubgraphView.remove_nodes_from()
- dace.sdfg.nodes module
AccessNode
CodeNode
Consume
ConsumeEntry
ConsumeEntry.chunksize
ConsumeEntry.condition
ConsumeEntry.consume
ConsumeEntry.debuginfo
ConsumeEntry.free_symbols
ConsumeEntry.from_json()
ConsumeEntry.instrument
ConsumeEntry.is_collapsed
ConsumeEntry.label
ConsumeEntry.map
ConsumeEntry.new_symbols()
ConsumeEntry.num_pes
ConsumeEntry.pe_index
ConsumeEntry.properties()
ConsumeEntry.schedule
ConsumeExit
EntryNode
ExitNode
LibraryNode
Map
MapEntry
MapEntry.collapse
MapEntry.debuginfo
MapEntry.free_symbols
MapEntry.from_json()
MapEntry.gpu_block_size
MapEntry.instrument
MapEntry.is_collapsed
MapEntry.label
MapEntry.map
MapEntry.map_type()
MapEntry.new_symbols()
MapEntry.omp_chunk_size
MapEntry.omp_num_threads
MapEntry.omp_schedule
MapEntry.params
MapEntry.properties()
MapEntry.range
MapEntry.schedule
MapEntry.unroll
MapExit
NestedSDFG
NestedSDFG.debuginfo
NestedSDFG.free_symbols
NestedSDFG.from_json()
NestedSDFG.infer_connector_types()
NestedSDFG.instrument
NestedSDFG.is_collapsed
NestedSDFG.no_inline
NestedSDFG.properties()
NestedSDFG.schedule
NestedSDFG.sdfg
NestedSDFG.symbol_mapping
NestedSDFG.unique_name
NestedSDFG.validate()
Node
Node.add_in_connector()
Node.add_out_connector()
Node.free_symbols
Node.in_connectors
Node.infer_connector_types()
Node.last_connector()
Node.new_symbols()
Node.next_connector()
Node.out_connectors
Node.properties()
Node.remove_in_connector()
Node.remove_out_connector()
Node.to_json()
Node.validate()
PipelineEntry
PipelineExit
PipelineScope
RTLTasklet
Tasklet
Tasklet.code
Tasklet.code_exit
Tasklet.code_global
Tasklet.code_init
Tasklet.debuginfo
Tasklet.free_symbols
Tasklet.from_json()
Tasklet.has_side_effects()
Tasklet.infer_connector_types()
Tasklet.instrument
Tasklet.language
Tasklet.name
Tasklet.properties()
Tasklet.side_effects
Tasklet.state_fields
Tasklet.validate()
UnregisteredLibraryNode
full_class_path()
- dace.sdfg.analysis module
- dace.sdfg.infer_types module
- dace.sdfg.propagation module
AffineSMemlet
ConstantRangeMemlet
ConstantSMemlet
GenericSMemlet
MemletPattern
ModuloSMemlet
SeparableMemlet
SeparableMemletPattern
align_memlet()
propagate_memlet()
propagate_memlets_nested_sdfg()
propagate_memlets_scope()
propagate_memlets_sdfg()
propagate_memlets_state()
propagate_states()
propagate_subset()
reset_state_annotations()
- dace.sdfg.replace module
- dace.sdfg.scope module
- dace.sdfg.sdfg module
InterstateEdge
InterstateEdge.assignments
InterstateEdge.condition
InterstateEdge.condition_sympy()
InterstateEdge.free_symbols
InterstateEdge.from_json()
InterstateEdge.get_read_memlets()
InterstateEdge.is_unconditional()
InterstateEdge.label
InterstateEdge.new_symbols()
InterstateEdge.properties()
InterstateEdge.read_symbols()
InterstateEdge.replace()
InterstateEdge.replace_dict()
InterstateEdge.to_json()
LogicalGroup
SDFG
SDFG.add_array()
SDFG.add_constant()
SDFG.add_datadesc()
SDFG.add_edge()
SDFG.add_loop()
SDFG.add_node()
SDFG.add_pgrid()
SDFG.add_rdistrarray()
SDFG.add_reference()
SDFG.add_scalar()
SDFG.add_state()
SDFG.add_state_after()
SDFG.add_state_before()
SDFG.add_stream()
SDFG.add_subarray()
SDFG.add_symbol()
SDFG.add_temp_transient()
SDFG.add_temp_transient_like()
SDFG.add_transient()
SDFG.add_view()
SDFG.all_edges_recursive()
SDFG.all_nodes_recursive()
SDFG.all_sdfgs_recursive()
SDFG.append_exit_code()
SDFG.append_global_code()
SDFG.append_init_code()
SDFG.append_transformation()
SDFG.apply_fpga_transformations()
SDFG.apply_gpu_transformations()
SDFG.apply_strict_transformations()
SDFG.apply_transformations()
SDFG.apply_transformations_once_everywhere()
SDFG.apply_transformations_repeated()
SDFG.arg_names
SDFG.arglist()
SDFG.argument_typecheck()
SDFG.arrays
SDFG.arrays_recursive()
SDFG.available_data_reports()
SDFG.build_folder
SDFG.call_with_instrumented_data()
SDFG.callback_mapping
SDFG.clear_data_reports()
SDFG.clear_instrumentation_reports()
SDFG.compile()
SDFG.constants
SDFG.constants_prop
SDFG.data()
SDFG.debuginfo
SDFG.exit_code
SDFG.expand_library_nodes()
SDFG.fill_scope_connectors()
SDFG.find_new_constant()
SDFG.find_new_symbol()
SDFG.find_state()
SDFG.free_symbols
SDFG.from_file()
SDFG.from_json()
SDFG.generate_code()
SDFG.get_instrumentation_reports()
SDFG.get_instrumented_data()
SDFG.get_latest_report()
SDFG.get_latest_report_path()
SDFG.global_code
SDFG.hash_sdfg()
SDFG.init_code
SDFG.init_signature()
SDFG.instrument
SDFG.is_instrumented()
SDFG.is_loaded()
SDFG.is_valid()
SDFG.label
SDFG.logical_groups
SDFG.make_array_memlet()
SDFG.name
SDFG.openmp_sections
SDFG.orig_sdfg
SDFG.parent
SDFG.parent_nsdfg_node
SDFG.parent_sdfg
SDFG.predecessor_state_transitions()
SDFG.predecessor_states()
SDFG.prepend_exit_code()
SDFG.process_grids
SDFG.propagate
SDFG.properties()
SDFG.rdistrarrays
SDFG.read_and_write_sets()
SDFG.remove_data()
SDFG.remove_node()
SDFG.remove_symbol()
SDFG.replace()
SDFG.replace_dict()
SDFG.reset_sdfg_list()
SDFG.save()
SDFG.sdfg_id
SDFG.sdfg_list
SDFG.set_exit_code()
SDFG.set_global_code()
SDFG.set_init_code()
SDFG.set_sourcecode()
SDFG.shared_transients()
SDFG.signature()
SDFG.signature_arglist()
SDFG.simplify()
SDFG.specialize()
SDFG.start_state
SDFG.states()
SDFG.subarrays
SDFG.symbols
SDFG.temp_data_name()
SDFG.to_json()
SDFG.transformation_hist
SDFG.transients()
SDFG.update_sdfg_list()
SDFG.validate()
SDFG.view()
memlets_in_ast()
- dace.sdfg.state module
SDFGState
SDFGState.add_access()
SDFGState.add_array()
SDFGState.add_consume()
SDFGState.add_edge()
SDFGState.add_edge_pair()
SDFGState.add_map()
SDFGState.add_mapped_tasklet()
SDFGState.add_memlet_path()
SDFGState.add_nested_sdfg()
SDFGState.add_node()
SDFGState.add_pipeline()
SDFGState.add_read()
SDFGState.add_reduce()
SDFGState.add_scalar()
SDFGState.add_stream()
SDFGState.add_tasklet()
SDFGState.add_transient()
SDFGState.add_write()
SDFGState.all_edges_and_connectors()
SDFGState.dynamic_executions
SDFGState.executions
SDFGState.fill_scope_connectors()
SDFGState.from_json()
SDFGState.instrument
SDFGState.is_collapsed
SDFGState.is_empty()
SDFGState.label
SDFGState.location
SDFGState.name
SDFGState.nodes()
SDFGState.nosync
SDFGState.parent
SDFGState.properties()
SDFGState.ranges
SDFGState.remove_edge()
SDFGState.remove_edge_and_connectors()
SDFGState.remove_memlet_path()
SDFGState.remove_node()
SDFGState.set_default_lineinfo()
SDFGState.set_label()
SDFGState.symbol_instrument
SDFGState.symbol_instrument_condition
SDFGState.symbols_defined_at()
SDFGState.to_json()
SDFGState.validate()
StateGraphView
StateGraphView.all_edges_recursive()
StateGraphView.all_nodes_recursive()
StateGraphView.all_transients()
StateGraphView.arglist()
StateGraphView.data_nodes()
StateGraphView.defined_symbols()
StateGraphView.edges()
StateGraphView.edges_by_connector()
StateGraphView.entry_node()
StateGraphView.exit_node()
StateGraphView.free_symbols
StateGraphView.in_edges_by_connector()
StateGraphView.memlet_path()
StateGraphView.memlet_tree()
StateGraphView.nodes()
StateGraphView.out_edges_by_connector()
StateGraphView.read_and_write_sets()
StateGraphView.replace()
StateGraphView.replace_dict()
StateGraphView.scope_children()
StateGraphView.scope_dict()
StateGraphView.scope_leaves()
StateGraphView.scope_subgraph()
StateGraphView.scope_tree()
StateGraphView.signature_arglist()
StateGraphView.top_level_transients()
StateSubgraphView
- dace.sdfg.utils module
StopTraversal
change_edge_dest()
change_edge_src()
check_sdfg()
concurrent_subgraphs()
consolidate_edges()
consolidate_edges_scope()
depth_limited_dfs_iter()
depth_limited_search()
dfs_conditional()
dfs_topological_sort()
distributed_compile()
dynamic_map_inputs()
find_input_arraynode()
find_output_arraynode()
fuse_states()
get_all_view_nodes()
get_last_view_node()
get_next_nonempty_states()
get_view_edge()
get_view_node()
has_dynamic_map_inputs()
inline_sdfgs()
is_array_stream_view()
is_fpga_kernel()
is_nonfree_sym_dependent()
is_parallel()
load_precompiled_sdfg()
local_transients()
map_view_to_array()
merge_maps()
node_path_graph()
nodes_in_all_simple_paths()
postdominators()
remove_edge_and_dangling_path()
scope_aware_topological_sort()
separate_maps()
trace_nested_access()
traverse_sdfg_with_defined_symbols()
unique_node_repr()
weakly_connected_component()
- dace.sdfg.validation module
- Module contents
- dace.transformation package
- Subpackages
- dace.transformation.auto package
- dace.transformation.dataflow package
- Submodules
- dace.transformation.dataflow.copy_to_device module
- dace.transformation.dataflow.double_buffering module
- dace.transformation.dataflow.gpu_transform module
GPUTransformMap
GPUTransformMap.apply()
GPUTransformMap.can_be_applied()
GPUTransformMap.expressions()
GPUTransformMap.fullcopy
GPUTransformMap.map_entry
GPUTransformMap.match_to_str()
GPUTransformMap.properties()
GPUTransformMap.reduce
GPUTransformMap.register_trans
GPUTransformMap.sequential_innermaps
GPUTransformMap.stdlib
GPUTransformMap.toplevel_trans
- dace.transformation.dataflow.gpu_transform_local_storage module
GPUTransformLocalStorage
GPUTransformLocalStorage.apply()
GPUTransformLocalStorage.can_be_applied()
GPUTransformLocalStorage.expressions()
GPUTransformLocalStorage.fullcopy
GPUTransformLocalStorage.map_entry
GPUTransformLocalStorage.match_to_str()
GPUTransformLocalStorage.nested_seq
GPUTransformLocalStorage.properties()
GPUTransformLocalStorage.reduce
GPUTransformLocalStorage.stdlib
in_path()
in_scope()
- dace.transformation.dataflow.local_storage module
- dace.transformation.dataflow.map_collapse module
- dace.transformation.dataflow.map_expansion module
- dace.transformation.dataflow.map_fission module
- dace.transformation.dataflow.map_for_loop module
- dace.transformation.dataflow.map_fusion module
- dace.transformation.dataflow.map_interchange module
- dace.transformation.dataflow.mapreduce module
MapReduceFusion
MapReduceFusion.apply()
MapReduceFusion.can_be_applied()
MapReduceFusion.expressions()
MapReduceFusion.in_array
MapReduceFusion.match_to_str()
MapReduceFusion.no_init
MapReduceFusion.out_array
MapReduceFusion.properties()
MapReduceFusion.reduce
MapReduceFusion.stdlib
MapReduceFusion.tasklet
MapReduceFusion.tmap_exit
MapWCRFusion
MapWCRFusion.apply()
MapWCRFusion.can_be_applied()
MapWCRFusion.expressions()
MapWCRFusion.in_array
MapWCRFusion.match_to_str()
MapWCRFusion.out_array
MapWCRFusion.rmap_in_cr
MapWCRFusion.rmap_in_entry
MapWCRFusion.rmap_in_tasklet
MapWCRFusion.rmap_out_entry
MapWCRFusion.rmap_out_exit
MapWCRFusion.tasklet
MapWCRFusion.tmap_exit
- dace.transformation.dataflow.matrix_product_transpose module
MatrixProductTranspose
MatrixProductTranspose.a_times_b
MatrixProductTranspose.apply()
MatrixProductTranspose.at
MatrixProductTranspose.blas
MatrixProductTranspose.bt
MatrixProductTranspose.can_be_applied()
MatrixProductTranspose.expressions()
MatrixProductTranspose.match_to_str()
MatrixProductTranspose.properties()
MatrixProductTranspose.transpose_a
MatrixProductTranspose.transpose_b
- dace.transformation.dataflow.merge_arrays module
- dace.transformation.dataflow.mpi module
- dace.transformation.dataflow.otf_map_fusion module
- dace.transformation.dataflow.reduce_expansion module
ReduceExpansion
ReduceExpansion.apply()
ReduceExpansion.can_be_applied()
ReduceExpansion.create_in_transient
ReduceExpansion.create_out_transient
ReduceExpansion.debug
ReduceExpansion.expand()
ReduceExpansion.expressions()
ReduceExpansion.properties()
ReduceExpansion.reduce
ReduceExpansion.reduce_implementation
ReduceExpansion.reduction_type_identity
ReduceExpansion.reduction_type_update
ReduceExpansion.stdlib
- dace.transformation.dataflow.redundant_array module
- dace.transformation.dataflow.redundant_array_copying module
- dace.transformation.dataflow.streaming_memory module
StreamingComposition
StreamingMemory
StreamingMemory.access
StreamingMemory.apply()
StreamingMemory.buffer_size
StreamingMemory.can_be_applied()
StreamingMemory.entry
StreamingMemory.exit
StreamingMemory.expressions()
StreamingMemory.memory_buffering_target_bytes
StreamingMemory.properties()
StreamingMemory.storage
StreamingMemory.use_memory_buffering
get_post_state()
is_int()
- dace.transformation.dataflow.stream_transient module
- dace.transformation.dataflow.strip_mining module
StripMining
StripMining.annotates_memlets()
StripMining.apply()
StripMining.can_be_applied()
StripMining.dim_idx
StripMining.divides_evenly
StripMining.expressions()
StripMining.map_entry
StripMining.match_to_str()
StripMining.new_dim_prefix
StripMining.properties()
StripMining.skew
StripMining.strided
StripMining.tile_offset
StripMining.tile_size
StripMining.tile_stride
StripMining.tiling_type
calc_set_image()
calc_set_image_index()
calc_set_image_range()
calc_set_union()
- dace.transformation.dataflow.tiling module
- dace.transformation.dataflow.vectorization module
- dace.transformation.dataflow.warp_tiling module
- Module contents
- dace.transformation.interstate package
- Submodules
- dace.transformation.interstate.fpga_transform_sdfg module
- dace.transformation.interstate.fpga_transform_state module
- dace.transformation.interstate.gpu_transform_sdfg module
GPUTransformSDFG
GPUTransformSDFG.annotates_memlets()
GPUTransformSDFG.apply()
GPUTransformSDFG.can_be_applied()
GPUTransformSDFG.exclude_copyin
GPUTransformSDFG.exclude_copyout
GPUTransformSDFG.exclude_tasklets
GPUTransformSDFG.expressions()
GPUTransformSDFG.properties()
GPUTransformSDFG.register_trans
GPUTransformSDFG.sequential_innermaps
GPUTransformSDFG.simplify
GPUTransformSDFG.skip_scalar_tasklets
GPUTransformSDFG.toplevel_trans
- dace.transformation.interstate.loop_detection module
- dace.transformation.interstate.loop_to_map module
- dace.transformation.interstate.move_loop_into_map module
- dace.transformation.interstate.loop_peeling module
- dace.transformation.interstate.loop_unroll module
- dace.transformation.interstate.sdfg_nesting module
- dace.transformation.interstate.state_elimination module
- dace.transformation.interstate.state_fusion module
- Module contents
- Available Passes
- Scalar-to-Symbol Promotion
- Dead Memory Elimination and Merging
ArrayElimination
ArrayElimination.CATEGORY
ArrayElimination.apply_pass()
ArrayElimination.depends_on()
ArrayElimination.merge_access_nodes()
ArrayElimination.modifies()
ArrayElimination.properties()
ArrayElimination.remove_redundant_copies()
ArrayElimination.remove_redundant_views()
ArrayElimination.report()
ArrayElimination.should_reapply()
TransientReuse
- Dead Code Elimination
DeadStateElimination
DeadStateElimination.CATEGORY
DeadStateElimination.apply_pass()
DeadStateElimination.find_dead_states()
DeadStateElimination.is_definitely_not_taken()
DeadStateElimination.is_definitely_taken()
DeadStateElimination.modifies()
DeadStateElimination.properties()
DeadStateElimination.report()
DeadStateElimination.should_reapply()
DeadDataflowElimination
DeadDataflowElimination.CATEGORY
DeadDataflowElimination.apply_pass()
DeadDataflowElimination.depends_on()
DeadDataflowElimination.modifies()
DeadDataflowElimination.properties()
DeadDataflowElimination.remove_persistent_memory
DeadDataflowElimination.report()
DeadDataflowElimination.should_reapply()
DeadDataflowElimination.skip_library_nodes
PROTECTED_NAMES
RemoveUnusedSymbols
- Constant Propagation
ConstantPropagation
ConstantPropagation.CATEGORY
ConstantPropagation.apply_pass()
ConstantPropagation.collect_constants()
ConstantPropagation.modifies()
ConstantPropagation.progress
ConstantPropagation.properties()
ConstantPropagation.recursive
ConstantPropagation.report()
ConstantPropagation.should_apply()
ConstantPropagation.should_reapply()
OptionalArrayInference
- Memlet Consolidation
- State Fusion and SDFG Inlining
- Analysis Passes
- The Simplify Pass Pipeline
- Module contents
- dace.transformation.subgraph package
- Submodules
- dace.transformation.subgraph.expansion module
- dace.transformation.subgraph.gpu_persistent_fusion module
GPUPersistentKernel
GPUPersistentKernel.apply()
GPUPersistentKernel.can_be_applied()
GPUPersistentKernel.get_entry_states()
GPUPersistentKernel.get_exit_states()
GPUPersistentKernel.include_in_assignment
GPUPersistentKernel.is_gpu_state()
GPUPersistentKernel.kernel_prefix
GPUPersistentKernel.properties()
GPUPersistentKernel.validate
- dace.transformation.subgraph.helpers module
- dace.transformation.subgraph.subgraph_fusion module
SubgraphFusion
SubgraphFusion.adjust_arrays_nsdfg()
SubgraphFusion.apply()
SubgraphFusion.can_be_applied()
SubgraphFusion.check_topo_feasibility()
SubgraphFusion.clone_intermediate_nodes()
SubgraphFusion.consolidate
SubgraphFusion.copy_edge()
SubgraphFusion.debug
SubgraphFusion.determine_compressible_nodes()
SubgraphFusion.determine_invariant_dimensions()
SubgraphFusion.disjoint_subsets
SubgraphFusion.fuse()
SubgraphFusion.get_adjacent_nodes()
SubgraphFusion.get_invariant_dimensions()
SubgraphFusion.keep_global
SubgraphFusion.prepare_intermediate_nodes()
SubgraphFusion.propagate
SubgraphFusion.properties()
SubgraphFusion.schedule_innermaps
SubgraphFusion.transient_allocation
- Module contents
- Submodules
- Passes and Pipelines
- Transformations
ExpandTransformation
ExpandTransformation.apply()
ExpandTransformation.can_be_applied()
ExpandTransformation.expansion()
ExpandTransformation.expressions()
ExpandTransformation.from_json()
ExpandTransformation.match_to_str()
ExpandTransformation.postprocessing()
ExpandTransformation.properties()
ExpandTransformation.to_json()
MultiStateTransformation
PatternNode
PatternTransformation
PatternTransformation.annotates_memlets()
PatternTransformation.apply()
PatternTransformation.apply_pass()
PatternTransformation.apply_pattern()
PatternTransformation.apply_to()
PatternTransformation.can_be_applied()
PatternTransformation.expr_index
PatternTransformation.expressions()
PatternTransformation.from_json()
PatternTransformation.match_to_str()
PatternTransformation.print_match()
PatternTransformation.properties()
PatternTransformation.sdfg_id
PatternTransformation.setup_match()
PatternTransformation.state_id
PatternTransformation.subclasses_recursive()
PatternTransformation.subgraph
PatternTransformation.to_json()
SingleStateTransformation
SubgraphTransformation
SubgraphTransformation.apply()
SubgraphTransformation.apply_pass()
SubgraphTransformation.apply_to()
SubgraphTransformation.can_be_applied()
SubgraphTransformation.from_json()
SubgraphTransformation.get_subgraph()
SubgraphTransformation.properties()
SubgraphTransformation.sdfg_id
SubgraphTransformation.setup_match()
SubgraphTransformation.state_id
SubgraphTransformation.subclasses_recursive()
SubgraphTransformation.subgraph
SubgraphTransformation.subgraph_view()
SubgraphTransformation.to_json()
TransformationBase
- dace.transformation.helpers module
are_subsets_contiguous()
can_run_state_on_fpga()
constant_symbols()
contained_in()
extract_map_dims()
find_contiguous_subsets()
find_sdfg_control_flow()
get_internal_scopes()
get_parent_map()
gpu_map_has_explicit_threadblocks()
is_symbol_unused()
make_map_internal_write_external()
nest_sdfg_control_flow()
nest_sdfg_subgraph()
nest_state_subgraph()
offset_map()
permute_map()
reconnect_edge_through_map()
redirect_edge()
replicate_scope()
scope_tree_recursive()
simplify_state()
split_interstate_edges()
state_fission()
tile()
unsqueeze_memlet()
- dace.transformation.passes.pattern_matching module
PatternApplyOnceEverywhere
PatternMatchAndApply
PatternMatchAndApply.CATEGORY
PatternMatchAndApply.apply_pass()
PatternMatchAndApply.depends_on()
PatternMatchAndApply.modifies()
PatternMatchAndApply.permissive
PatternMatchAndApply.print_report
PatternMatchAndApply.progress
PatternMatchAndApply.properties()
PatternMatchAndApply.should_reapply()
PatternMatchAndApply.states
PatternMatchAndApply.transformations
PatternMatchAndApply.validate
PatternMatchAndApply.validate_all
PatternMatchAndApplyRepeated
collapse_multigraph_to_nx()
enumerate_matches()
get_transformation_metadata()
match_patterns()
type_match()
type_or_class_match()
- dace.transformation.optimizer module
- dace.transformation.testing module
- Module contents
- Subpackages
- dace.optimization package
- Tuning APIs
AutoTuner
CutoutTuner
CutoutTuner.apply()
CutoutTuner.config_from_key()
CutoutTuner.cutouts()
CutoutTuner.dry_run()
CutoutTuner.evaluate()
CutoutTuner.file_name()
CutoutTuner.measure()
CutoutTuner.optimize()
CutoutTuner.pre_evaluate()
CutoutTuner.search()
CutoutTuner.space()
CutoutTuner.task
CutoutTuner.top_k_configs()
CutoutTuner.try_load()
tqdm()
DistributedCutoutTuner
DistributedSpaceTuner
tqdm()
- Auto-Tuners
- Utilities
- Module contents
- Tuning APIs
Submodules
dace.builtin_hooks module
A set of built-in hooks.
- dace.builtin_hooks.cli_optimize_on_call(sdfg)
Calls a command-line interface for interactive SDFG transformations on every DaCe program call.
- Parameters:
sdfg (SDFG) – The current SDFG to optimize.
- dace.builtin_hooks.instrument(itype, filter, annotate_maps=True, annotate_tasklets=False, annotate_states=False, annotate_sdfgs=False)
Context manager that instruments every called DaCe program. Depending on the given instrumentation type and parameters, annotates the given elements on the SDFG. Filtering is possible with strings and wildcards, or a function (if given).
Example usage:
with dace.instrument(dace.InstrumentationType.GPU_Events, filter='*add??') as profiler: some_program(...) # ... other_program(...) # Print instrumentation report for last call print(profiler.reports[-1])
- Parameters:
itype (
InstrumentationType
) – Instrumentation type to use.filter (
Union
[str
,Callable
[[Any
],bool
],None
]) – An optional string with*
and?
wildcards, or function that receives one parameter, determining whether to instrument the element or not.annotate_maps (
bool
) – If True, instruments scopes (e.g., map, consume) in the SDFGs.annotate_tasklets (
bool
) – If True, instruments tasklets in the SDFGs.annotate_states (
bool
) – If True, instruments states in the SDFGs.annotate_sdfgs (
bool
) – If True, instruments whole SDFGs and sub-SDFGs.
- dace.builtin_hooks.instrument_data(ditype, filter, restore_from=None, verbose=False)
Context manager that instruments (serializes/deserializes) the data of every called DaCe program. This can be used for reproducible runs and debugging. Depending on the given data instrumentation type and parameters, annotates the access nodes on the SDFG. Filtering is possible with strings and wildcards, or a function (if given). An optional instrumented data report can be given to load a specific set of data.
Example usage:
@dace def sample(a: dace.float64, b: dace.float64): arr = a + b return arr + 1 with dace.instrument_data(dace.DataInstrumentationType.Save, filter='a??'): result_ab = sample(a, b) # Optionally, get the serialized data containers dreport = sdfg.get_instrumented_data() assert dreport.keys() == {'arr'} # dreport['arr'] is now the internal ``arr`` # Reload latest instrumented data (can be customized if ``restore_from`` is given) with dace.instrument_data(dace.DataInstrumentationType.Restore, filter='a??'): result_cd = sample(c, d) # where ``c, d`` are different from ``a, b`` assert numpy.allclose(result_ab, result_cd)
- Parameters:
ditype (DataInstrumentationType) – Data instrumentation type to use.
filter (
Union
[str
,Callable
[[Any
],bool
],None
]) – An optional string with*
and?
wildcards, or function that receives one parameter, determining whether to instrument the access node or not.restore_from (
Union
[str
, InstrumentedDataReport,None
]) – An optional parameter that specifies which instrumented data report to load data from. It could be a path to a folder, anInstrumentedDataReport
object, or None to load the latest generated report.verbose (
bool
) – If True, prints information about created and loaded instrumented data reports.
- dace.builtin_hooks.profile(repetitions=100, warmup=0)
Context manager that enables profiling of each called DaCe program. If repetitions is greater than 1, the program is run multiple times and the average execution time is reported.
Example usage:
with dace.profile(repetitions=100) as profiler: some_program(...) # ... other_program(...) # Print all execution times of the last called program (other_program) print(profiler.times[-1])
- Parameters:
repetitions (
int
) – The number of times to run each DaCe program.warmup (
int
) – Number of additional repetitions to run the program without measuring time.
- Note:
Running functions multiple times may affect the results of the program.
dace.config module
- class dace.config.Config
Bases:
object
Interface to the DaCe hierarchical configuration file.
- static append(*key_hierarchy, value=None, autosave=False)
Appends to the current value of a given configuration entry and sets it.
- Parameters:
key_hierarchy – A tuple of strings leading to the configuration entry. For example: (‘a’, ‘b’, ‘c’) would be configuration entry c which is in the path a->b.
value – The value to append.
autosave – If True, saves the configuration to the file after modification.
- Returns:
Current configuration entry value.
Examples:
Config.append('compiler', 'cpu', 'args', value='-fPIC')
- static cfg_filename()
Returns the current configuration file path.
- default_filename = '.dace.conf'
- static get(*key_hierarchy)
Returns the current value of a given configuration entry.
- Parameters:
key_hierarchy – A tuple of strings leading to the configuration entry. For example: (‘a’, ‘b’, ‘c’) would be configuration entry c which is in the path a->b.
- Returns:
Configuration entry value.
- static get_bool(*key_hierarchy)
Returns the current value of a given boolean configuration entry. This specialization allows more string types to be converted to boolean, e.g., due to environment variable overrides.
- Parameters:
key_hierarchy – A tuple of strings leading to the configuration entry. For example: (‘a’, ‘b’, ‘c’) would be configuration entry c which is in the path a->b.
- Returns:
Configuration entry value (as a boolean).
- static get_default(*key_hierarchy)
Returns the default value of a given configuration entry. Takes into accound current operating system.
- Parameters:
key_hierarchy – A tuple of strings leading to the configuration entry. For example: (‘a’, ‘b’, ‘c’) would be configuration entry c which is in the path a->b.
- Returns:
Default configuration value.
- static get_metadata(*key_hierarchy)
Returns the configuration specification of a given entry from the schema.
- Parameters:
key_hierarchy – A tuple of strings leading to the configuration entry. For example: (‘a’, ‘b’, ‘c’) would be configuration entry c which is in the path a->b.
- Returns:
Configuration specification as a dictionary.
- static initialize()
Initializes configuration.
- Note:
This function runs automatically when the module is loaded.
- static load(filename=None)
Loads a configuration from an existing file.
- Parameters:
filename – The file to load. If unspecified, uses default configuration file.
- static load_schema(filename=None)
Loads a configuration schema from an existing file.
- Parameters:
filename – The file to load. If unspecified, uses default schema file.
- static nondefaults()
- Return type:
Dict
[str
,Any
]
- static save(path=None, all=False)
Saves the current configuration to a file.
- Parameters:
path – The file to save to. If unspecified, uses default configuration file.
all (
bool
) – If False, only saves non-default configuration entries. Otherwise saves all entries.
- static set(*key_hierarchy, value=None, autosave=False)
Sets the current value of a given configuration entry.
- Parameters:
key_hierarchy – A tuple of strings leading to the configuration entry. For example: (‘a’, ‘b’, ‘c’) would be configuration entry c which is in the path a->b.
value – The value to set.
autosave – If True, saves the configuration to the file after modification.
Examples:
Config.set('profiling', value=True)
- dace.config.set_temporary(*path, value)
Temporarily set configuration value at
path
to value, and reset it after the context manager exits.Example:
print(Config.get("compiler", "build_type") with set_temporary("compiler", "build_type", value="Debug"): print(Config.get("compiler", "build_type") print(Config.get("compiler", "build_type")
- dace.config.temporary_config()
Creates a context where all configuration options changed will be reset when the context exits.
Example:
with temporary_config(): Config.set("testing", "serialization", value=True) Config.set("optimizer", "autooptimize", value=True) foo()
dace.data module
- class dace.data.Array(*args, **kwargs)
Bases:
Data
Array data descriptor. This object represents a multi-dimensional data container in SDFGs that can be accessed and modified. The definition does not contain the actual array, but rather a description of how to construct it and how it should behave.
The array definition is flexible in terms of data allocation, it allows arbitrary multidimensional, potentially symbolic shapes (e.g., an array with size
N+1 x M
will haveshape=(N+1, M)
), of arbitrary data typeclasses (dtype
). The physical data layout of the array is controlled by several properties:The
strides
property determines the ordering and layout of the dimensions — it specifies how many elements in memory are skipped whenever one element in that dimension is advanced. For example, the contiguous dimension always has a stride of1
; a C-style MxN array will have strides(N, 1)
, whereas a FORTRAN-style array of the same size will have(1, M)
. Strides can be larger than the shape, which allows post-padding of the contents of each dimension.The
start_offset
property is a number of elements to pad the beginning of the memory buffer with. This is used to ensure that a specific index is aligned as a form of pre-padding (that element may not necessarily be the first element, e.g., in the case of halo or “ghost cells” in stencils).The
total_size
property determines how large the total allocation size is. Normally, it is the product of theshape
elements, but if pre- or post-padding is involved it may be larger.alignment
provides alignment guarantees (in bytes) of the first element in the allocated array. This is used by allocators in the code generator to ensure certain addresses are expected to be aligned, e.g., for vectorization.Lastly, a property called
offset
controls the logical access of the array, i.e., what would be the first element’s index after padding and alignment. This mimics a language feature prominent in scientific languages such as FORTRAN, where one could set an array to begin with 1, or any arbitrary index. By default this is set to zero.
To summarize with an example, a two-dimensional array with pre- and post-padding looks as follows:
[xxx][ |xx] [ |xx] [ |xx] [ |xx] --------------- [xxxxxxxxxxxxx] shape = (4, 10) strides = (12, 1) start_offset = 3 total_size = 63 [= 3 + 12 * 5] offset = (0, 0, 0)
Notice that the last padded row does not appear in strides, but is a consequence of
total_size
being larger.Apart from memory layout, other properties of
Array
help the data-centric transformation infrastructure make decisions about the array.allow_conflicts
states that warnings should not be printed if potential conflicted acceses (e.g., data races) occur.may_alias
inhibits transformations that may assume that this array does not overlap with other arrays in the same context (e.g., function).- alignment
Allocation alignment in bytes (0 uses compiler-default)
- allow_conflicts
If enabled, allows more than one memlet to write to the same memory location without conflict resolution.
- as_arg(with_types=True, for_call=False, name=None)
Returns a string for a C++ function signature (e.g., int *A).
- clone()
- covers_range(rng)
- property free_symbols
Returns a set of undefined symbols in this data descriptor.
- classmethod from_json(json_obj, context=None)
- is_equivalent(other)
Check for equivalence (shape and type) of two data descriptors.
- may_alias
This pointer may alias with other pointers in the same function
- offset
Initial offset to translate all indices by.
- optional
Specifies whether this array may have a value of None. If False, the array must not be None. If option is not set, it is inferred by other properties and the OptionalArrayInference pass.
- pool
Hint to the allocator that using a memory pool is preferred
- properties()
- set_shape(new_shape, strides=None, total_size=None, offset=None)
Updates the shape of an array.
- sizes()
- start_offset
Allocation offset elements for manual alignment (pre-padding)
- strides
For each dimension, the number of elements to skip in order to obtain the next element in that dimension.
- to_json()
- total_size
The total allocated size of the array. Can be used for padding.
- validate()
Validate the correctness of this object. Raises an exception on error.
- class dace.data.Data(*args, **kwargs)
Bases:
object
Data type descriptors that can be used as references to memory. Examples: Arrays, Streams, custom arrays (e.g., sparse matrices).
- as_arg(with_types=True, for_call=False, name=None)
Returns a string for a C++ function signature (e.g., int *A).
- property ctype
- debuginfo
Object property of type DebugInfo
- dtype
Object property of type typeclass
- property free_symbols: Set[Basic | SymExpr]
Returns a set of undefined symbols in this data descriptor.
- is_equivalent(other)
Check for equivalence (shape and type) of two data descriptors.
- lifetime
Data allocation span
- location
Full storage location identifier (e.g., rank, GPU ID)
- properties()
- set_strides_from_layout(*dimensions, alignment=1, only_first_aligned=False)
Sets the absolute strides and total size of this data descriptor, according to the given dimension ordering and alignment.
- Parameters:
dimensions (
int
) – A sequence of integers representing a permutation of the descriptor’s dimensions.alignment (
Union
[Basic
,SymExpr
]) – Padding (in elements) at the end, ensuring stride is a multiple of this number. 1 (default) means no padding.only_first_aligned (
bool
) – If True, only the first dimension is padded withalignment
. Otherwise all dimensions are.
- shape
Object property of type tuple
- storage
Storage location
- strides_from_layout(*dimensions, alignment=1, only_first_aligned=False)
Returns the absolute strides and total size of this data descriptor, according to the given dimension ordering and alignment.
- Parameters:
dimensions (
int
) – A sequence of integers representing a permutation of the descriptor’s dimensions.alignment (
Union
[Basic
,SymExpr
]) – Padding (in elements) at the end, ensuring stride is a multiple of this number. 1 (default) means no padding.only_first_aligned (
bool
) – If True, only the first dimension is padded withalignment
. Otherwise all dimensions are.
- Return type:
- Returns:
A 2-tuple of (tuple of strides, total size).
- to_json()
- property toplevel
- transient
Object property of type bool
- validate()
Validate the correctness of this object. Raises an exception on error.
- property veclen
- class dace.data.Reference(*args, **kwargs)
Bases:
Array
Data descriptor that acts as a dynamic reference of another array. It can be used just like a regular array, except that it could be set to an arbitrary array or sub-array at runtime. To set a reference, connect another access node to it and use the “set” connector.
In order to enable data-centric analysis and optimizations, avoid using References as much as possible.
- as_array()
- properties()
- validate()
Validate the correctness of this object. Raises an exception on error.
- class dace.data.Scalar(*args, **kwargs)
Bases:
Data
Data descriptor of a scalar value.
- allow_conflicts
Object property of type bool
- as_arg(with_types=True, for_call=False, name=None)
Returns a string for a C++ function signature (e.g., int *A).
- clone()
- covers_range(rng)
- static from_json(json_obj, context=None)
- is_equivalent(other)
Check for equivalence (shape and type) of two data descriptors.
- property may_alias: bool
- property offset
- property optional: bool
- property pool: bool
- properties()
- sizes()
- property start_offset
- property strides
- property total_size
- class dace.data.Stream(*args, **kwargs)
Bases:
Data
Stream (or stream array) data descriptor.
- as_arg(with_types=True, for_call=False, name=None)
Returns a string for a C++ function signature (e.g., int *A).
- buffer_size
Size of internal buffer.
- clone()
- covers_range(rng)
- property free_symbols
Returns a set of undefined symbols in this data descriptor.
- classmethod from_json(json_obj, context=None)
- is_equivalent(other)
Check for equivalence (shape and type) of two data descriptors.
- is_stream_array()
- property may_alias: bool
- offset
Object property of type list
- property optional: bool
- properties()
- size_string()
- sizes()
- property start_offset
- property strides
- to_json()
- property total_size
- class dace.data.View(*args, **kwargs)
Bases:
Array
Data descriptor that acts as a reference (or view) of another array. Can be used to reshape or reinterpret existing data without copying it.
To use a View, it needs to be referenced in an access node that is directly connected to another access node. The rules for deciding which access node is viewed are:
If there is one edge (in/out) that leads (via memlet path) to an access node, and the other side (out/in) has a different number of edges.
If there is one incoming and one outgoing edge, and one leads to a code node, the one that leads to an access node is the viewed data.
If both sides lead to access nodes, if one memlet’s data points to the view it cannot point to the viewed node.
If both memlets’ data are the respective access nodes, the access node at the highest scope is the one that is viewed.
If both access nodes reside in the same scope, the input data is viewed.
Other cases are ambiguous and will fail SDFG validation.
In the Python frontend,
numpy.reshape
andnumpy.ndarray.view
both generate Views.- as_array()
- properties()
- validate()
Validate the correctness of this object. Raises an exception on error.
- dace.data.create_datadescriptor(obj, no_custom_desc=False)
Creates a data descriptor from various types of objects.
- See:
dace.data.Data
- dace.data.find_new_name(name, existing_names)
Returns a name that matches the given
name
as a prefix, but does not already exist in the given existing name set. The behavior is typically to append an underscore followed by a unique (increasing) number. If the name does not already exist in the set, it is returned as-is.- Parameters:
name (
str
) – The given name to find.existing_names (
Sequence
[str
]) – The set of existing names.
- Return type:
str
- Returns:
A new name that is not in existing_names.
- dace.data.make_array_from_descriptor(descriptor, original_array=None, symbols=None)
Creates an array that matches the given data descriptor, and optionally copies another array to it.
- Parameters:
descriptor (
Array
) – The data descriptor to create the array from.original_array (
Union
[_SupportsArray
[dtype
[Any
]],_NestedSequence
[_SupportsArray
[dtype
[Any
]]],bool
,int
,float
,complex
,str
,bytes
,_NestedSequence
[Union
[bool
,int
,float
,complex
,str
,bytes
]],None
]) – An optional array to fill the content of the return value with.symbols (
Optional
[Dict
[str
,Any
]]) – An optional symbol mapping between symbol names and their values. Used for creating arrays with symbolic sizes.
- Return type:
Union
[_SupportsArray
[dtype
[Any
]],_NestedSequence
[_SupportsArray
[dtype
[Any
]]],bool
,int
,float
,complex
,str
,bytes
,_NestedSequence
[Union
[bool
,int
,float
,complex
,str
,bytes
]]]- Returns:
A NumPy-compatible array (CuPy for GPU storage) with the specified size and strides.
- dace.data.make_reference_from_descriptor(descriptor, original_array, symbols=None)
Creates an array that matches the given data descriptor from the given pointer. Shares the memory with the argument (does not create a copy).
- Parameters:
descriptor (
Array
) – The data descriptor to create the array from.original_array (
c_void_p
) – The array whose memory the return value would be used in.symbols (
Optional
[Dict
[str
,Any
]]) – An optional symbol mapping between symbol names and their values. Used for referencing arrays with symbolic sizes.
- Return type:
Union
[_SupportsArray
[dtype
[Any
]],_NestedSequence
[_SupportsArray
[dtype
[Any
]]],bool
,int
,float
,complex
,str
,bytes
,_NestedSequence
[Union
[bool
,int
,float
,complex
,str
,bytes
]]]- Returns:
A NumPy-compatible array (CuPy for GPU storage) with the specified size and strides, sharing memory with the pointer specified in
original_array
.
dace.dtypes module
A module that contains various DaCe type definitions.
- class dace.dtypes.AllocationLifetime(value=<no_arg>, names=None, module=None, qualname=None, type=None, start=1, boundary=None)
Bases:
AutoNumberEnum
Options for allocation span (when to allocate/deallocate) of data.
- Global = 4
Allocated throughout the entire program (outer SDFG)
- Persistent = 5
Allocated throughout multiple invocations (init/exit)
- SDFG = 3
Allocated throughout the innermost SDFG (possibly nested)
- Scope = 1
Allocated/Deallocated on innermost scope start/end
- State = 2
Allocated throughout the containing state
- Undefined = 6
- register(*args)
- class dace.dtypes.DataInstrumentationType(value=<no_arg>, names=None, module=None, qualname=None, type=None, start=1, boundary=None)
Bases:
AutoNumberEnum
Types of data container instrumentation providers.
- No_Instrumentation = 1
- Restore = 3
- Save = 2
- Undefined = 4
- register(*args)
- class dace.dtypes.DebugInfo(start_line, start_column=0, end_line=-1, end_column=0, filename=None)
Bases:
object
Source code location identifier of a node/edge in an SDFG. Used for IDE and debugging purposes.
- static from_json(json_obj, context=None)
- to_json()
- class dace.dtypes.DeviceType(value=<no_arg>, names=None, module=None, qualname=None, type=None, start=1, boundary=None)
Bases:
AutoNumberEnum
An enumeration.
- CPU = 1
Multi-core CPU
- FPGA(Intel or Xilinx) = 3
FPGA (Intel or Xilinx)
- GPU(AMD or NVIDIA) = 2
GPU (AMD or NVIDIA)
- Snitch = 4
Compute Cluster (RISC-V)
- Undefined = 5
- register(*args)
- class dace.dtypes.InstrumentationType(value=<no_arg>, names=None, module=None, qualname=None, type=None, start=1, boundary=None)
Bases:
AutoNumberEnum
Types of instrumentation providers.
- FPGA = 7
- GPU_Events = 6
- LIKWID_CPU = 4
- LIKWID_GPU = 5
- No_Instrumentation = 1
- PAPI_Counters = 3
- Timer = 2
- Undefined = 8
- register(*args)
- class dace.dtypes.Language(value=<no_arg>, names=None, module=None, qualname=None, type=None, start=1, boundary=None)
Bases:
AutoNumberEnum
Available programming languages for SDFG tasklets.
- CPP = 2
- MLIR = 5
- OpenCL = 3
- Python = 1
- SystemVerilog = 4
- Undefined = 6
- register(*args)
- class dace.dtypes.OMPScheduleType(value=<no_arg>, names=None, module=None, qualname=None, type=None, start=1, boundary=None)
Bases:
AutoNumberEnum
Available OpenMP shedule types for Maps with CPU-Multicore schedule.
- Default = 1
OpenMP library default
- Dynamic = 3
Dynamic schedule
- Guided = 4
Guided schedule
- Static = 2
Static schedule
- Undefined = 5
- register(*args)
- class dace.dtypes.ReductionType(value=<no_arg>, names=None, module=None, qualname=None, type=None, start=1, boundary=None)
Bases:
AutoNumberEnum
Reduction types natively supported by the SDFG compiler.
- Bitwise_And = 7
Bitwise AND (&)
- Bitwise_Or = 9
Bitwise OR (|)
- Bitwise_Xor = 11
Bitwise XOR (^)
- Custom = 1
Defined by an arbitrary lambda function
- Div = 16
Division (only supported in OpenMP)
- Exchange = 14
Set new value, return old value
- Logical_And = 6
Logical AND (&&)
- Logical_Or = 8
Logical OR (||)
- Logical_Xor = 10
Logical XOR (!=)
- Max = 3
Maximum value
- Max_Location = 13
Maximum value and its location
- Min = 2
Minimum value
- Min_Location = 12
Minimum value and its location
- Product = 5
Product
- Sub = 15
Subtraction (only supported in OpenMP)
- Sum = 4
Sum
- Undefined = 17
- class dace.dtypes.ScheduleType(value=<no_arg>, names=None, module=None, qualname=None, type=None, start=1, boundary=None)
Bases:
AutoNumberEnum
Available map schedule types in the SDFG.
- CPU_Multicore = 4
OpenMP
- Default = 1
Scope-default parallel schedule
- FPGA_Device = 12
- FPGA_Multi_Pumped = 15
Used for double pumping
- GPU_Default = 7
Default scope schedule for GPU code. Specializes to schedule GPU_Device and GPU_Global during inference.
- GPU_Device = 8
Kernel
- GPU_Persistent = 11
- GPU_ThreadBlock = 9
Thread-block code
- GPU_ThreadBlock_Dynamic = 10
Allows rescheduling work within a block
- MPI = 3
MPI processes
- SVE_Map = 6
Arm SVE
- Sequential = 2
Sequential code (single-thread)
- Snitch = 13
- Snitch_Multicore = 14
- Undefined = 16
- Unrolled = 5
Unrolled code
- register(*args)
- class dace.dtypes.StorageType(value=<no_arg>, names=None, module=None, qualname=None, type=None, start=1, boundary=None)
Bases:
AutoNumberEnum
Available data storage types in the SDFG.
- CPU_Heap = 4
Host memory allocated on heap
- CPU_Pinned = 3
Host memory that can be DMA-accessed from accelerators
- CPU_ThreadLocal = 5
Thread-local host memory
- Default = 1
Scope-default storage location
- FPGA_Global = 8
Off-chip global memory (DRAM)
- FPGA_Local = 9
On-chip memory (bulk storage)
- FPGA_Registers = 10
On-chip memory (fully partitioned registers)
- FPGA_ShiftRegister = 11
Only accessible at constant indices
- GPU_Global = 6
GPU global memory
On-GPU shared memory
- Register = 2
Local data on registers, stack, or equivalent memory
- SVE_Register = 12
SVE register
- Snitch_L2 = 14
External memory
- Snitch_SSR = 15
Memory accessed by SSR streamer
- Snitch_TCDM = 13
Cluster-private memory
- Undefined = 16
- register(*args)
- class dace.dtypes.TilingType(value=<no_arg>, names=None, module=None, qualname=None, type=None, start=1, boundary=None)
Bases:
AutoNumberEnum
Available tiling types in a StripMining transformation.
- CeilRange = 2
- Normal = 1
- NumberOfTiles = 3
- Undefined = 4
- register(*args)
- class dace.dtypes.Typeclasses(value=<no_arg>, names=None, module=None, qualname=None, type=None, start=1, boundary=None)
Bases:
AutoNumberEnum
An enumeration.
- Undefined = 16
- bool = 1
- bool_ = 2
- complex128 = 15
- complex64 = 14
- float16 = 11
- float32 = 12
- float64 = 13
- int16 = 4
- int32 = 5
- int64 = 6
- int8 = 3
- register(*args)
- uint16 = 8
- uint32 = 9
- uint64 = 10
- uint8 = 7
- class dace.dtypes.callback(return_types, *variadic_args)
Bases:
typeclass
Looks like
dace.callback([None, <some_native_type>], *types)
- as_arg(name)
- as_ctypes()
Returns the ctypes version of the typeclass.
- as_numpy_dtype()
- cfunc_return_type()
Returns the typeclass of the return value of the function call.
- Return type:
- static from_json(json_obj, context=None)
- get_trampoline(pyfunc, other_arguments, refs)
- is_scalar_function()
Returns True if the callback is a function that returns a scalar value (or nothing). Scalar functions are the only ones that can be used within a dace.tasklet explicitly.
- Return type:
bool
- to_json()
- dace.dtypes.can_access(schedule, storage)
Identifies whether a container of a storage type can be accessed in a specific schedule.
- dace.dtypes.can_allocate(storage, schedule)
Identifies whether a container of a storage type can be allocated in a specific schedule. Used to determine arguments to subgraphs by the innermost scope that a container can be allocated in. For example, FPGA_Global memory cannot be allocated from within the FPGA scope, or GPU shared memory cannot be allocated outside of device-level code.
- Parameters:
storage (
StorageType
) – The storage type of the data container to allocate.schedule (
ScheduleType
) – The scope schedule to query.
- Returns:
True if the container can be allocated, False otherwise.
- class dace.dtypes.compiletime
Bases:
object
Data descriptor type hint signalling that argument evaluation is deferred to call time.
Example usage:
@dace.program def example(A: dace.float64[20], constant: dace.compiletime): if constant == 0: return A + 1 else: return A + 2
In the above code,
constant
will be replaced with its value at call time during parsing.
- dace.dtypes.deduplicate(iterable)
Removes duplicates in the passed iterable.
- dace.dtypes.is_array(obj)
Returns True if an object implements the
data_ptr()
,__array_interface__
or__cuda_array_interface__
standards (supported by NumPy, Numba, CuPy, PyTorch, etc.). If the interface is supported, pointers can be directly obtained using the_array_interface_ptr
function.- Parameters:
obj (
Any
) – The given object.- Return type:
- Returns:
True iff the object implements the array interface.
- dace.dtypes.is_gpu_array(obj)
Returns True if an object is a GPU array, i.e., implements the
__cuda_array_interface__
standard (supported by Numba, CuPy, PyTorch, etc.). If the interface is supported, pointers can be directly obtained using the_array_interface_ptr
function.- Parameters:
obj (
Any
) – The given object.- Return type:
- Returns:
True iff the object implements the CUDA array interface.
- dace.dtypes.isallowed(var, allow_recursive=False)
Returns True if a given object is allowed in a DaCe program.
- Parameters:
allow_recursive – whether to allow dicts or lists containing constants.
- dace.dtypes.isconstant(var)
Returns True if a variable is designated a constant (i.e., that can be directly generated in code).
- dace.dtypes.ismodule(var)
Returns True if a given object is a module.
- dace.dtypes.ismodule_and_allowed(var)
Returns True if a given object is a module and is one of the allowed modules in DaCe programs.
- dace.dtypes.ismoduleallowed(var)
Helper function to determine the source module of an object, and whether it is allowed in DaCe programs.
- dace.dtypes.json_to_typeclass(obj, context=None)
- dace.dtypes.max_value(dtype)
Get a max value literal for dtype.
- dace.dtypes.min_value(dtype)
Get a min value literal for dtype.
- class dace.dtypes.opaque(typename)
Bases:
typeclass
A data type for an opaque object, useful for C bindings/libnodes, i.e., MPI_Request.
- as_ctypes()
Returns the ctypes version of the typeclass.
- as_numpy_dtype()
- static from_json(json_obj, context=None)
- to_json()
- dace.dtypes.paramdec(dec)
Parameterized decorator meta-decorator. Enables using @decorator, @decorator(), and @decorator(…) with the same function.
- class dace.dtypes.pointer(wrapped_typeclass)
Bases:
typeclass
A data type for a pointer to an existing typeclass.
- Example use:
dace.pointer(dace.struct(x=dace.float32, y=dace.float32)).
- as_ctypes()
Returns the ctypes version of the typeclass.
- as_numpy_dtype()
- property base_type
- static from_json(json_obj, context=None)
- property ocltype
- to_json()
- dace.dtypes.ptrtocupy(ptr, inner_ctype, shape)
- dace.dtypes.ptrtonumpy(ptr, inner_ctype, shape)
- class dace.dtypes.pyobject
Bases:
opaque
A generic data type for Python objects in un-annotated callbacks. It cannot be used inside a DaCe program, but can be passed back to other Python callbacks. Use with caution, and ensure the value is not removed by the garbage collector or the program will crash.
- as_ctypes()
Returns the ctypes version of the typeclass.
- as_numpy_dtype()
- to_python(obj_id)
- dace.dtypes.reduction_identity(dtype, red)
Returns known identity values (which we can safely reset transients to) for built-in reduction types.
- Parameters:
dtype (
typeclass
) – Input type.red (
ReductionType
) – Reduction type.
- Return type:
Any
- Returns:
Identity value in input type, or None if not found.
- dace.dtypes.result_type_of(lhs, *rhs)
Returns the largest between two or more types (dace.types.typeclass) according to C semantics.