DaCe: Data-Centric Parallel Programming

Decoupling domain science from performance optimization.

DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages, and maps it to high-performance CPU, GPU, and FPGA programs, which can be optimized to achieve state-of-the-art. Internally, DaCe uses the Stateful Dataflow multiGraphs (SDFG) data-centric intermediate representation: A transformable, interactive representation of code based on data movement. Since the input code and the SDFG are separate, it is possible to optimize a program without changing its source, so that it stays readable. On the other hand, the used optimizations are customizable and user-extensible, so they can be written once and reused in many applications. With data-centric parallel programming, we enable direct knowledge transfer of performance optimization, regardless of the application or the target processor.

DaCe generates high-performance programs for:

  • Multi-core CPUs (tested on Intel, IBM POWER9, and ARM with SVE)

  • NVIDIA GPUs and AMD GPUs (see how to use HIP in DaCe)

  • Xilinx and Intel FPGAs

If you use DaCe, cite us:

@inproceedings{dace,
  author    = {Ben-Nun, Tal and de~Fine~Licht, Johannes and Ziogas, Alexandros Nikolaos and Schneider, Timo and Hoefler, Torsten},
  title     = {Stateful Dataflow Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous Architectures},
  year      = {2019},
  booktitle = {Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis},
  series = {SC '19}
}

Reference